On Unconditionally Saturated Banach Spaces

نویسنده

  • PANDELIS DODOS
چکیده

We prove a structural property of the class of unconditionally saturated separable Banach spaces. We show, in particular, that for every analytic set A, in the Effros-Borel space of subspaces of C[0, 1], of unconditionally saturated separable Banach spaces, there exists an unconditionally saturated Banach space Y , with a Schauder basis, that contains isomorphic copies of every space X in the class A.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Polynomials on Banach Spaces with Unconditional Bases

We study the classes of homogeneous polynomials on a Banach space with unconditional Schauder basis that have unconditionally convergent monomial expansions relative to this basis. We extend some results of Matos, and we show that the homogeneous polynomials with unconditionally convergent expansions coincide with the polynomials that are regular with respect to the Banach lattices structure of...

متن کامل

m at h . FA ] 1 4 A pr 1 99 8 GENUS N BANACH SPACES

We show that the classification problem for genus n Banach spaces can be reduced to the unconditionally primary case and that the critical case there is n = 2. It is further shown that a genus n Banach space is unconditionally primary if and only if it contains a complemented subspace of genus (n − 1). We begin the process of classifying the genus 2 spaces by showing they have a strong decompos...

متن کامل

Characterizations of Series in Banach Spaces

In this paper we prove several new characterizations of weakly unconditionally Cauchy series in Banach spaces and in the dual space of a normed space. For a given series ζ, we consider the spaces S(ζ), Sw(ζ) and S0(ζ) of bounded sequences of real numbers (ai)i such that the series P i aixi is convergent, weakly convergent or ∗-weakly convergent, respectively. By means of these spaces we charact...

متن کامل

Unconditionally converging polynomials on Banach spaces

We prove that weakly unconditionally Cauchy (w.u.C.) series and unconditionally converging (u.c.) series are preserved under the action of polynomials or holomorphic functions on Banach spaces, with natural restrictions in the latter case. Thus it is natural to introduce the unconditionally converging polynomials, defined as polynomials taking w.u.C. series into u.c. series, and analogously, th...

متن کامل

0 Orlicz - Pettis Polynomials on Banach Spaces

We introduce the class of Orlicz-Pettis polynomials between Banach spaces, defined by their action on weakly unconditionally Cauchy series. We give a number of equivalent definitions, examples and counterexamples which highlight the differences between these polynomials and the corresponding linear operators.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008